# CH251 Datasheet

V<sub>1</sub>A

https://wch-ic.com

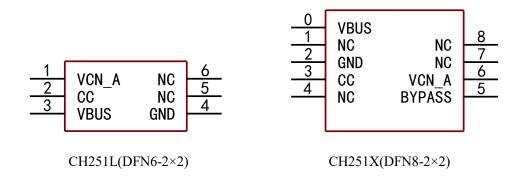
#### 1. Overview

CH251 is a simplified version of USB Type-C cable e-Marker chip, support USB Type-C 2.1 standard and USB PD 3.1 standard, can be used for Type-C five-core cable related applications. The CH251 chip integrates VCONN diode, Ra resistor, VBUS power supply unit and high-voltage LDO internally, which can be operated in a single chip without peripheral devices.

The CH251 ships with a default configuration programmed in internally, and supports chip, terminal or finished cable to update the configuration data through the Type-C port for programming. In addition to the default configuration, each piece of CH251 also supports up to 5 times of configuration data updating and writing, and has a data lock function. The factory default configuration data of CH251 has a variety of options.

The VBUS of CH251L supports up to 22V input voltage power supply and can be used for 100W (20V5A) power Type-C five-core cable; CH251X, compared to CH251L, VBUS supports up to 52V input voltage power supply and can be used for 240W (48V5A) power Type-C five-core cable.

## 2. Features

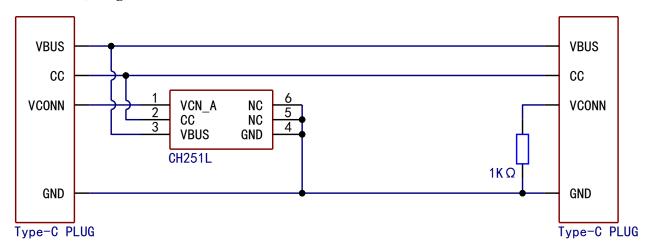

- VCONN supports 2.7V to 22V input voltage
- CH251X VBUS supports 4.7V to 52V input voltage
- Support USB Type-C 2.1 standard and USB PD 3.1 standard
- Integrated VCONN diode and Ra resistor
- VCONN pin voltage tolerant 25V, CC pins tolerant voltage 28V, VBUS pin tolerant voltage 56V (CH251X)
- Support configuration data update program
- Support EPR Mode
- Support Get Manufacturer Info message, manufacturer string configurable

## 3. Application

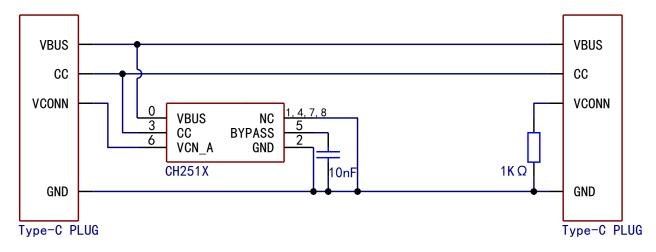
• USB Type-C Passive Cable

# 4. Pins

# 4.1 CH251 Package Pin Arrangement




4.2 CH251 Pin Function Description


| We conserve a market of a conserve of |         |          |                    |                                                  |  |  |  |
|---------------------------------------|---------|----------|--------------------|--------------------------------------------------|--|--|--|
| Pin No. CH251L CH251X                 |         | Pin name | Туре               | Pin description                                  |  |  |  |
| 0,4                                   | 2       | GND      | Power              | Common ground terminal                           |  |  |  |
| 1                                     | 6       | VCN_A    | Power              | Proximal VCONN, working power input              |  |  |  |
| -                                     | 5       | BYPASS   | Power              | External connect 10nF capacitance                |  |  |  |
| 3                                     | 0       | VBUS     | High voltage power | Input pin of high voltage power supply           |  |  |  |
| 2                                     | 3       | CC       | Bidirectional      | Type-C PD communication                          |  |  |  |
| 5,6                                   | 1,4,7,8 | NC       | -                  | Reserved pins, can be grounded or keep suspended |  |  |  |

# 5. Typical Application

# 5.1 CH251L, Single-end eMarker



# 5.2 CH251X, Single-end eMarker



## 6. Function Description

#### 6.1 Overview

CH251 is a USB Type-C cable e-Marker chip that supports USB Type-C 2.1 standard and USB PD 3.1 standard. It can be used in various Type-C cable related applications. After the equipment supplies power to the CH251 through the VBUS line in the Type-C interface, it communicates with the CH251 through the CC pin to realize the eMarker related functions.

#### 6.2 SOP' Communication

SOP' is the protocol used for the interface communication between equipment and cable in USBPD protocol. After detecting the existence of Ra in the interface, the equipment supplies power to the cable interface through VBUS, and uses SOP' messages to communicate with the eMarker chip in the cable interface.

## **6.3 Supported Message**

CH251 supports the following three message types: Hard Reset, Cable Reset, and SOP' messages. Other types of messages are ignored and GoodCRC is not replied.

When the Hard Reset and Cable Reset messages are received, the CH251 chip will perform a reset operation and all working states will be reset.

When a SOP' message is received, CH251 replies to the GoodCRC message. Only the messages listed in the following table will be further processed and responded to, while unlisted messages will be ignored after replying to GoodCRC messages.

When a message is received from the USBPD2.0 specification version, CH251 automatically adapts according to the protocol version.

| Message property | Message type          | Description                                                    |  |  |
|------------------|-----------------------|----------------------------------------------------------------|--|--|
| Control Message  | Soft_Reset            | The software resets the message, resets the received and       |  |  |
| Control Message  |                       | sent Message ID.                                               |  |  |
|                  | BIST                  | Built-in messages for testing.                                 |  |  |
|                  | Discover Identity     | Cable characteristic identification instruction. See 6.3.1 for |  |  |
|                  |                       | details.                                                       |  |  |
|                  | Discover SVIDs        | Cable standard ID or vendor ID identification instructions.    |  |  |
| Data Message     |                       | See 6.3.2 for details.                                         |  |  |
|                  | Discover Modes        | Cable pattern recognition instructions. See 6.3.3 for          |  |  |
|                  |                       | details.                                                       |  |  |
|                  | Enter Mode            | Cable mode entry command. See 6.3.3 for details.               |  |  |
|                  | Exit Mode             | Cable mode exit instruction. See 6.3.3 for details.            |  |  |
| Extended Message | Get_Status            | Get the cable interface temperature information.               |  |  |
| Extended Message | Get_Manufacturer_Info | Get manufacturer information. See 6.3.4 for details.           |  |  |

#### **6.3.1 Discover Identity**

Discover Identity messages are used for devices to obtain cable characteristics from eMarker, including cable brand, length, voltage and current carrying capacity, maximum communication rate and so on. When CH251 receives a Discover Identity REQ, it replies with a Discover Identity ACK message. According to the USB PD 3.1 protocol, the Discover Identity ACK message consists of five VDO in the following table, which also marks the default configuration.

#### ID Header VDO:

| Bit(s) | Description |
|--------|-------------|
|        |             |

|       | USB Communications Capable as USB Host                 |
|-------|--------------------------------------------------------|
| 31    | 0b - Not capable [Default]                             |
|       | 1b - Capable                                           |
|       | USB Communications Capable as a USB Device             |
| 30    | 0b - Not capable [Default]                             |
|       | 1b - Capable                                           |
|       | SOP' Product Type (Cable Plug/VPD)                     |
| 29~27 | 011b - Passive Cable [Default]                         |
|       | 100b - Active Cable                                    |
|       | Modal Operation Supported (Alternate Modes)            |
| 26    | 0b - Not capable [Default]                             |
|       | 1b - Capable                                           |
| 25~23 | Reserved. Shall be set to zero.                        |
|       | Connector Type                                         |
| 22~21 | 00b - Reserved, for compatibility with legacy systems. |
| 22~21 | 10b - USB Type-C® Receptacle                           |
|       | 11b - USB Type-C® Plug <b>[Default]</b>                |
| 20~16 | Reserved. Shall be set to zero.                        |
| 15.0  | USB Vendor ID.                                         |
| 15~0  | 0x1A86 [Default]                                       |

## Cert Stat VDO:

| Bit(s) | Description                  |
|--------|------------------------------|
| 31~0   | 32-bit unsigned integer, XID |
|        | 0x000036E5 [Default]         |

## Product VDO:

| Bit(s) | Description                             |
|--------|-----------------------------------------|
| 31~16  | 16-bit unsigned integer. USB Product ID |
|        | 0x8251 <b>[Default]</b>                 |
| 15~0   | 16-bit unsigned integer. bcdDevice      |
|        | 0x0000 [Default]                        |

## Passive Cable VDO:

| Bit(s) | Description                             |
|--------|-----------------------------------------|
| 31~28  | HW Version                              |
| 31~28  | 0x0 [Default]                           |
| 27.24  | Firmware Version                        |
| 27~24  | 0x0 [Default]                           |
| 23~21  | VDO Version                             |
| 23~21  | 000b - Version 1.0 <i>[Default]</i>     |
| 20     | Reserved. Shall be set to zero.         |
|        | USB Type-C® plug to USB Type-C®/Captive |
| 19~18  | 10b - USB Type-C® [Default]             |
|        | 11b - Captive                           |

|       | EPR Mode Capable                         |  |  |  |
|-------|------------------------------------------|--|--|--|
| 17    | 0b - Cable is not EPR Mode Capable       |  |  |  |
|       | 1b - Cable is EPR Mode Capable [Default] |  |  |  |
|       | Cable Latency                            |  |  |  |
|       | 0001b - <10ns (~1m) [Default]            |  |  |  |
|       | 0010b - 10ns to 20ns (~2m)               |  |  |  |
|       | 0011b - 20ns to 30ns (~3m)               |  |  |  |
| 16~13 | 0100b - 30ns to 40ns (~4m)               |  |  |  |
|       | 0101b - 40ns to 50ns (~5m)               |  |  |  |
|       | 0110b - 50ns to 60ns (~6m)               |  |  |  |
|       | 0111b - 60ns to 70ns (~7m)               |  |  |  |
|       | 1000b - 70ns (> 7m)                      |  |  |  |
|       | Cable Termination Type                   |  |  |  |
| 12~11 | 00b - VCONN not required [Default]       |  |  |  |
|       | 01b - VCONN required                     |  |  |  |
|       | Maximum VBUS Voltage                     |  |  |  |
| 10~9  | 00b - 20V                                |  |  |  |
|       | 11b - 50V [Default]                      |  |  |  |
| 8~7   | Reserved. Shall be set to zero.          |  |  |  |
|       | VBUS Current Handling Capability         |  |  |  |
| 6~5   | 01b - 3A                                 |  |  |  |
|       | 10b - 5A [Default]                       |  |  |  |
| 4~3   | Reserved. Shall be set to zero.          |  |  |  |
|       | USB Highest Speed                        |  |  |  |
|       | 000b - [USB 2.0] <i>[Default]</i>        |  |  |  |
|       | 001b - [USB 3.2] Gen1                    |  |  |  |
| 2~0   | 010b - [USB 3.2]/[USB4] Gen2             |  |  |  |
|       | 011b - [USB4] Gen3                       |  |  |  |
|       | 100b - [USB4] Gen4                       |  |  |  |
| T-    | ·                                        |  |  |  |

#### **6.3.2 Discover SVIDs**

The Discover SVIDs message is used by the device to obtain the standard ID or vendor ID of the cable from the eMarker. When CH251 receives a Discover SVIDs REQ, it replies with a Discover SVIDs ACK or NAK message in accordance with the protocol configuration.

#### 6.3.3 Discover Modes, Enter Mode and Exit Mode

The Discover Modes message is used for the device to obtain the mode under the cable-specific SVID from the eMarker; the Enter Mode and Exit Mode messages are used to enter and exit the mode under the specific SVID. How CH251 responds to these three messages is determined by the "Modal Operation Supported" configuration in the Discover Identity message. When CH251 receives Discover Modes REQ, if the chip is configured to support Modal Operation, it will reply Discover Modes ACK according to the configured content, otherwise the message will be discarded after replying to GoodCRC.

#### 6.3.4 Manufacturer Info

When CH251 receives a Get\_Manufacturer\_Info, it uses Manufacturer\_Info to reply. The Manufacturer\_Info message contains vendor ID (VID) and product ID (PID). It can also contain a custom ASCII string of no more than 22 bytes, and the string content can be customized.

According to the USB PD 3.1 protocol, the specific format of the Manufacturer\_Info message is as follows, and the factory default configuration value is marked.

| Byte Offset | Description         | Default Value            |  |
|-------------|---------------------|--------------------------|--|
| 0           | VID                 | 0x1A86                   |  |
| 2           | PID                 | 0x8251                   |  |
| 4           | Manufacturer String | "Nanjing Qinheng Micro." |  |

#### **6.4 Factory Default Configuration**

CH251L leaves the factory with the default configuration of 100W2MUSB2.0, while CH251X has the default configuration of 240W2MUSB2.0 when it leaves the factory. Other non-major parameters in the configuration are detailed in the table listed in the 6.3.1 Discover Identity section. If you need to record other configurations, please contact our technical support.

#### **6.5 Update Configuration**

CH251 uses MTP ROM that can be written multiple times to store configuration parameters. Specifically, the parameters of the Discover Identity, Discover SVIDs, Discover Modes, and Manufacturer\_Info messages can be configured as needed. CH251 supports 5 updates of configuration parameters and has a locking function. After locking, you cannot program and write parameters again.

Programming and writing needs to be carried out by using a special recorder and software. the special recorder can program and write the chip, finished terminal and finished cable. If necessary, please contact our technical support.

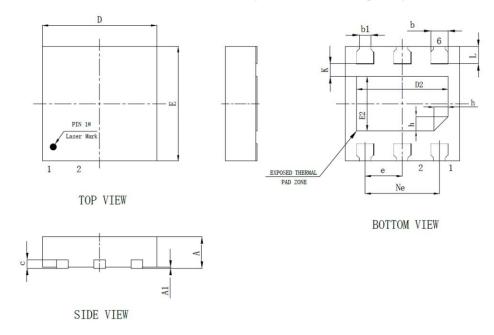
# 7. Parameters

# **7.1 Absolute Maximum Value** (Critical or exceeding the absolute maximum value will probably cause the chip to work improperly or even be damaged)

| Name  | Parameter description                                 | Min. | Max. | Unit |
|-------|-------------------------------------------------------|------|------|------|
| TA    | Ambient temperature during operation                  | -40  | 110  | °C   |
| TS    | Ambient temperature during storage                    | -55  | 125  | °C   |
| VCN   | Voltage on VCN_A pin                                  | -0.5 | 25   | V    |
| VIOCC | Voltage on CC pin                                     | -0.5 | 28   | V    |
| VBUS  | High voltage power supply input voltage VBUS (CH251L) | -0.5 | 25   | V    |
| VBUS  | High voltage power supply input voltage VBUS (CH251X) | -0.5 | 56   | V    |
| PD    | The maximum power consumption of the whole chip       |      | 300  | mW   |

# **7.2 Electrical Parameters** (Test conditions: T<sub>A</sub>=25°C)

| Name   | Parameter description                                 |     | Тур. | Max. | Unit |
|--------|-------------------------------------------------------|-----|------|------|------|
| VCN    | Input VCN_A voltage of auxiliary power supply         | 2.7 | 5.0  | 22   | V    |
| VBUS   | High voltage power supply input voltage VBUS (CH251L) |     | 5.0  | 22   | V    |
| VBUS   | High voltage power supply input voltage VBUS (CH251X) |     | 5.0  | 52   | V    |
| ICC    | Power supply current at work                          |     | 1.8  | 8    | mA   |
| RRA    | VCN_A pin pull-down resistor Ra                       |     | 1000 | 1200 | Ω    |
| VR     | Voltage threshold for power-on reset of power supply  |     | 2.5  | 2.7  | V    |
| ESDVCN | ESD HMB of VCN_A pin                                  |     | 4    |      | kV   |
| ESDCC  | ESD HMB of CC pin                                     |     | 7    |      | kV   |


# 8. Package Information

| Package form | Shaping width      | Pin spacing    |         | Package description       | Order model |
|--------------|--------------------|----------------|---------|---------------------------|-------------|
| DFN6         | 2×2mm              | 0.65mm 25.6mil |         | Dual Flat No-lead Package | CH251L      |
| DFN8         | 2×2mm 0.5mm 19.7mi |                | 19.7mil | Dual Flat No-lead Package | CH251X      |

Description: The unit marked in the package information diagram is mm (mm).

The first line 251L and 251X of the chip screen print correspond to the chip CH251L and CH251X respectively, and the second line represents the chip lot number information.

Figure 8.1 DFN6-2×2 package size



| SYMBOL | MILLIMETER |        |       |
|--------|------------|--------|-------|
|        | MIN        | NOM    | MAX   |
| A      | 0.50       | 0.55   | 0.60  |
| A1     | 0          | 0.02   | 0.05  |
| ь      | 0. 25      | 0. 30  | 0.35  |
| b1     | 0. 15      | 0. 20  | 0. 25 |
| c      | 0. 10      | 0. 15  | 0. 20 |
| D      | 1.90       | 2.00   | 2. 10 |
| D2     | 1.50       | 1.60   | 1.70  |
| e      | 0. 65BSC   |        |       |
| Ne     | 1. 30BSC   |        |       |
| E      | 1. 90      | 2.00   | 2. 10 |
| E2     | 0.85       | 0.95   | 1.05  |
| L      | 0. 25      | 0.30   | 0.35  |
| h      | 0. 20      | 0. 25  | 0.30  |
| K      | 0. 20      | 0. 225 | 0. 28 |

Figure 8.2 DFN8-2×2 package size